(UNICAMP-2017) - QUESTÃO

Considere as funções f(x) = 3x e g(x) = x³ , definidas para todo número real x. O número de soluções da equação f(g(x)) = g(f(x)) é igual a

a) 1. 
b) 2. 
c) 3.
d) 4.


-------------------------------------------------------------------- RESPOSTA: C

👀 Resposta comentada:

Considerando-se as funções f(x) = 3x e g(x) = x3, tem-se:
«math style=¨font-family:Tahoma¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»§#x2219;«/mo»«mo»§#xA0;«/mo»«mi mathvariant=¨normal¨»f«/mi»«mo»(«/mo»«mi mathvariant=¨normal¨»g«/mi»«mo»(«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»)«/mo»«mo»)«/mo»«mo»§#xA0;«/mo»«mo»=«/mo»«mo»§#xA0;«/mo»«msup»«mn»3«/mn»«mrow»«mi mathvariant=¨normal¨»g«/mi»«mo»(«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»)«/mo»«/mrow»«/msup»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#x2234;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mi mathvariant=¨normal¨»f«/mi»«mo»(«/mo»«mi mathvariant=¨normal¨»g«/mi»«mo»(«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»)«/mo»«mo»)«/mo»«mo»§#xA0;«/mo»«mo»=«/mo»«mo»§#xA0;«/mo»«msup»«mn»3«/mn»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»3«/mn»«/msup»«/msup»«mspace linebreak=¨newline¨/»«mo»§#x2219;«/mo»«mo»§#xA0;«/mo»«mi mathvariant=¨normal¨»g«/mi»«mo»(«/mo»«mi mathvariant=¨normal¨»f«/mi»«mo»(«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»)«/mo»«mo»)«/mo»«mo»§#xA0;«/mo»«mo»=«/mo»«mo»§#xA0;«/mo»«mo»[«/mo»«mi mathvariant=¨normal¨»f«/mi»«mo»(«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»)«/mo»«msup»«mo»]«/mo»«mn»3«/mn»«/msup»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#x2234;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mi mathvariant=¨normal¨»g«/mi»«mo»(«/mo»«mi mathvariant=¨normal¨»f«/mi»«mo»(«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»)«/mo»«mo»)«/mo»«mo»§#xA0;«/mo»«mo»=«/mo»«mo»§#xA0;«/mo»«mo»(«/mo»«msup»«mn»3«/mn»«mi mathvariant=¨normal¨»x«/mi»«/msup»«msup»«mo»)«/mo»«mn»3«/mn»«/msup»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#x2234;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mi mathvariant=¨normal¨»g«/mi»«mo»(«/mo»«mi mathvariant=¨normal¨»f«/mi»«mo»(«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»)«/mo»«mo»)«/mo»«mo»§#xA0;«/mo»«mo»=«/mo»«mo»§#xA0;«/mo»«msup»«mn»3«/mn»«mrow»«mn»3«/mn»«mi mathvariant=¨normal¨»x«/mi»«/mrow»«/msup»«/mrow»«/mstyle»«/math»
De f(g(x)) = g(f(x)), tem-se:
«math style=¨font-family:Tahoma¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«msup»«mn»3«/mn»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»3«/mn»«/msup»«/msup»«mo»§#xA0;«/mo»«mo»=«/mo»«mo»§#xA0;«/mo»«msup»«mn»3«/mn»«mrow»«mn»3«/mn»«mi mathvariant=¨normal¨»x«/mi»«/mrow»«/msup»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#x2234;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»3«/mn»«/msup»«mo»§#xA0;«/mo»«mo»=«/mo»«mo»§#xA0;«/mo»«mn»3«/mn»«mi mathvariant=¨normal¨»x«/mi»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#x2234;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»3«/mn»«/msup»«mo»§#xA0;«/mo»«mo»-«/mo»«mo»§#xA0;«/mo»«mn»3«/mn»«mi mathvariant=¨normal¨»x«/mi»«mo»§#xA0;«/mo»«mo»=«/mo»«mo»§#xA0;«/mo»«mn»0«/mn»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#x2234;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»(«/mo»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»2«/mn»«/msup»«mo»§#xA0;«/mo»«mo»-«/mo»«mo»§#xA0;«/mo»«mn»3«/mn»«mo»)«/mo»«mo»§#xA0;«/mo»«mo»=«/mo»«mo»§#xA0;«/mo»«mn»0«/mn»«mspace linebreak=¨newline¨/»«mi mathvariant=¨normal¨»x«/mi»«mo»§#xA0;«/mo»«mo»=«/mo»«mo»§#xA0;«/mo»«mn»0«/mn»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mi»ou«/mi»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§#xA0;«/mo»«mo»=«/mo»«mo»§#xA0;«/mo»«msqrt»«mn»3«/mn»«/msqrt»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mi»ou«/mi»«mo»§#xA0;«/mo»«mo»§#xA0;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§#xA0;«/mo»«mo»=«/mo»«mo»§#xA0;«/mo»«mo»-«/mo»«msqrt»«mn»3«/mn»«/msqrt»«mspace linebreak=¨newline¨/»«/mstyle»«/math»
Logo, o número de soluções da equação é 3.